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Abstract

Despite the great success of GANs in images translation
with different conditioned inputs such as semantic segmen-
tation and edge maps, generating high-fidelity realistic im-
ages with reference styles remains a grand challenge in con-
ditional image-to-image translation. This paper presents a
general image translation framework that incorporates op-
timal transport for feature alignment between conditional
inputs and style exemplars in image translation. The in-
troduction of optimal transport mitigates the constraint of
many-to-one feature matching significantly while building
up accurate semantic correspondences between conditional
inputs and exemplars. We design a novel unbalanced op-
timal transport to address the transport between features
with deviational distributions which exists widely between
conditional inputs and exemplars. In addition, we design a
semantic-activation normalization scheme that injects style
features of exemplars into the image translation process
successfully. Extensive experiments over multiple image
translation tasks show that our method achieves superior
image translation qualitatively and quantitatively as com-
pared with the state-of-the-art.

1. Introduction
Conditional image-to-image translation aims to generate

images from certain given conditional inputs such as se-
mantic segmentation [30, 40], layout [20], and key points
[36]. With the advance of Generative Adversarial Networks
(GANs), it has made rapid progress and achieved quite
promising translation performance in recent years. How-
ever, most existing methods have very loose control over
the translation process which often affects the translation
quality greatly and so the wide application of image trans-
lation in various tasks. Optimal style control is still an open
challenge in high-fidelity realistic image translation.

Several prior works attempted to tackle the style control
challenge by using a latent code that is encoded by either
Variational Auto-Encoder (VAE) [30] or style encoder [3].
However, latent codes often impair style control accuracy as
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Figure 1. Different feature matching in image translation: Cosine
Similarity tends to match each feature separately which often leads
to many-to-one matching. Classical optimal transport (Classical
OT) suppresses the many-to-one matching problem but it matches
all feature points including undesired outliers (existing between
deviational feature distributions). Our designed unbalanced opti-
mal transport (Unbalanced OT) mitigates many-to-one matching
and avoid outlier matching effectively.

they do not have sufficient capacity to capture detailed style
information. A different approach is to inject specific style
codes for different semantic regions [56], but it is specif-
ically designed for conditional input of semantic segmen-
tation and cannot well generalize to other conditional in-
puts. Recently, Zhang et al. [51] explore to establish dense
semantic correspondence between conditioned input and a
given style exemplar so as to offer dense style guidance in
translation. However, it constructs the semantic correspon-
dence based on cosine similarity that often leads to many-
to-one matching (i.e. multiple conditional input features
match to the same exemplar feature as illustrated in Fig.
1) and missing of details in image translation.

We designed UNITE, UNbalanced optImal feature
Transport for Exemplar-based image translation that
achieves high-fidelity image generation with faithful style
to given exemplars. UNITE consists of a feature transport
network and a translation network that are inter-connected
and can be jointly optimized in training. The feature
transport network introduces optimal transport [31] which
matches two sets of features as a whole and effectively over-
comes many-to-one matching as in the widely adopted co-
sine similarity [51] that matches individual features sepa-
rately. To tackle the distribution deviations between condi-
tional inputs and exemplars, we design an unbalanced op-



timal transport technique that adaptively learns the mass
(or weight) of each individual feature for effective trans-
port between distributions of different masses. In the trans-
lation network, we design a semantic-activation normaliza-
tion scheme that injects the aligned features into the transla-
tion process, where the exemplar features are transported in
a multi-stage manner for preserving rich and complicated
textural details. Extensive experiments show that UNITE
translates images with superior realism and fidelity.

The contributions of this work can be summarized in
three aspects. First, we propose a conditional image transla-
tion framework that introduces optimal transport for proper
feature alignment and faithful style control in image trans-
lation. Second, we design an unbalanced optimal trans-
port technique with adaptive mass learning scheme that is
capable of aligning features with deviational distributions,
and a multi-stage transport strategy that can preserve com-
plex textures at different scales. Third, we design a novel
semantic-activation normalization that is capable of inject-
ing the aligned style features into the image translation pro-
cess effectively.

2. Related Work

2.1. Image-to-Image Translation

GAN-based image-to-image translation has been inves-
tigated extensively due to its wide applications in different
tasks such as domain adaptation [32, 44], data augmenta-
tion [49, 45], image editing [41, 15, 42], image composi-
tion [46, 43], etc. Existing works explored different con-
ditional inputs such as semantic segmentation [10, 40, 30],
scene layouts [35, 53, 20], key points [27, 29, 48], edge
maps [10, 55, 18], etc. for photo-realistic image translation.
On the other hand, optimal style control remains a critical
yet challenging task that has attracted increasing attention in
recent years. For example, [9] and [26] transfer style codes
from exemplars to source images via adaptive instance nor-
malization (AdaIN) [8]. [30] uses variational autoencoder
(VAE) [13] to encode exemplars for image translation. [3]
employs a style encoder for style consistency between ex-
emplars and the translated images.

Different from the aforementioned methods that adopt
latent vectors for style control, [51] learns dense semantic
correspondences between conditional inputs and exemplars
for image translation. Similar ideas have been explored in
other translation tasks such as image colorization [6, 47]
that also employs exemplars to build up semantic corre-
spondences. On the other hand, most existing works use co-
sine similarity to build up semantic correspondences which
often suffer from many-to-one matching and resultant fea-
ture missing. We introduce optimal transport for feature
matching that treats the whole feature set as a whole and
overcomes the many-to-one matching effectively.

2.2. Optimal Transport

Optimal transport (OT) [38] provides a principal way of
comparing distributions and offers optimal plans for match-
ing distributions. As a linear programming problem, classic
OT is computationally intensive and [5] presents entropy
regularized optimal transport that is differentiable and can
be solved by the Sinkhorn-Knopp algorithm [34, 14] effi-
ciently. On the other hand, the classical optimal transport
has a typical constraint that they can only handle distribu-
tions with equal mass and thus become inapplicable while
facing unbalanced distributions with different masses and
deviations as widely existed in various tasks. Different ap-
proaches have been reported to address this new challenge.
For example, [2] presents a unified treatment of unbalanced
optimal transport that allows for both static and dynamic
formulations. [21] introduce an entropic version of unbal-
anced optimal transport.

In recent years, optimal transport has been widely ex-
plored in various computer vision tasks such as domain
adaptation [4], semantic matching [23], style transfer [16],
etc. In this work, we adapt unbalanced feature transport
for aligning deviational features between conditional inputs
and exemplars for high-fidelity image translation.

3. Proposed Method
Our UNITE consists of a feature transport network (in

blue and orange) and a translation network (in green) which
are inter-connected as shown in Fig. 2. The feature trans-
port network aligns the features of conditional inputs and
exemplars and the translation network produces the final
synthesis, more details to be described in the following sub-
sections.

3.1. Feature Transport Network

The feature transport network aims to transport the fea-
ture of exemplars to be aligned with that of conditional in-
puts, thus providing accurate style guidance for the image
translation. As shown in Fig. 2, both conditional input and
exemplar are fed to two feature extractors FX and FZ to
extract two sets of feature vectors X = (x1, · · · , xn) ∈ Rd
and Z = (z1, · · · , zn) ∈ Rd, where n denotes the number
of feature vectors and d denotes the feature dimension.

To align feature sets X and Z, most existing methods
[51, 6, 47] build a dense correspondence matrix between
X and Z by measuring the Cosine similarity between any
two feature vectors. As each feature vector xi is matched to
the feature vector zj with the maximum Cosine similarity
separately, multiple feature vectors in X may correspond
to the same feature vector in Z (i.e. many-to-one match-
ing), which leads to blurry translation as illustrated in Fig.
3. To avoid many-to-one matching between sets of feature
vectors, we introduce optimal transport method to align the



Conditional Input

Exemplar

Unbalanced
Optimal Transport Prediction

Ground Truth

Transport Plan

αMasses α

FZ

FX

ββMasses

X

Z

*

*

SEACE SEACE SEACE

Discriminator

Aligned Features

Figure 2. The framework of our proposed network: The Conditional Input and Exemplar are fed to feature extractors FX and FZ to
extract feature vectors X and Z. The mass (or weight) of the feature vectors (α and β masses) are then determined collectively by X
and Z. The weights and the feature vectors form two sets of Dirac masses α and β, which are further aligned through Unbalanced
Optimal Transport. With an obtained Transport Plan, the feature of the Exemplar is transported in a multi-stage manner to be aligned with
that of the Conditional Input. The aligned features will be injected into the translation network through a proposed SEmantic-ACtivation
(dE)normalization (SEACE) to synthesize the final output image. (Blue and orange parts for feature transport network, green part for
translation network)

features of conditional inputs and exemplars.
Classical Optimal Transport. The classical Optimal

transport aims to determine the best transport plan (namely
the minimum amount of total work required) to transform
one measure into another with the same mass. Here the
‘work’ is evaluated by the product of the cost and the
amount of mass to be transported. With constraints on the
total masses in transport, optimal transport penalizes the
many-to-one matching effectively.

To formulate the feature alignment as an optimal trans-
port problem and derive the constraints of total masses,
we encode the conditional input feature X and exemplar
feature Z as Dirac masses: α =

∑n
i=1 αiδxi

and β =∑n
i=1 βiδzj , where the masses αi, βi ≥ 0 and feature vec-

tors xi, zi denote the locations of αi, βi. Then we define
a distance matrix C, where each entry Cij in C gives the
cost of moving mass αi to mass βj which can be defined

by: Cij = 1− x>
i ·zj

||xi|| ||zj || A transport plan T can be defined,
where each entry Tij is the amount of masses transported
between αi and βj . Then the classical optimal transport
problem can be formed as:

OT (α, β) = min
T

(

n∑
i,j=1

CijTij) = min
T
〈C, T 〉

subject to (T~1) = α, (T>~1) = β

(1)

The constraints of the total masses (T~1) = α and

(T>~1) = β naturally penalize the many-to-one matching
in optimal transport as illustrated in Fig. 3.

Unbalanced Optimal Transport. For classical optimal
transport, the total masses of the two measures should be
the same, namely

∑n
i=1 αi =

∑n
j=1 βj . But for condi-

tional inputs and exemplars, their features are usually not
perfectly matched so have different total masses. For exam-
ple, the conditional input (key-point map) in Fig. 2 does not
contain feet which exist in the exemplar, so the feature of
feet region in the exemplar is treated as outliers in optimal
transport and should not be matched to any feature of the
conditional input. However, classical optimal transport in-
evitably matches all features, leading to inaccurate or false
matching as illustrated in Fig. 3. We handle it by introduc-
ing a relaxed version of classical optimal transport, namely
unbalanced optimal transport (UOT or unbalanced OT) [2]
that aims to determine an optimal transport plan between
measures of different total masses. We formulate unbal-
anced OT by replacing the ‘Hard’ conservation of masses
in (1) by a ‘Soft’ penalty with a divergence metric. An un-
balanced OT problem can thus be formulated as follows:

min
T

[
〈C, T 〉+ τKL(T~1||α) + τKL(T>~1||β)

]
(2)

where τ is regularization parameter, KL is the Kullback-
Leibler divergence which is defined as KL(a||b) =∑n
i=1 ai log(

ai
bi
)− ai + bi.



We employ cross-inner product to generate the masses
αi, βj(i, j ∈ [1, n]) associated with each feature vector.
The masses are highly correlated with specific conditional
inputs and exemplars, thus it should be determined collec-
tively by both of them. Intuitively, the feature vector that
is more related with another feature set should have higher
mass. We therefore determine the mass of a feature vector
by computing its relevance with another feature set:

αi = xi ·
∑n
i=1(zi)

n
, βj = zj ·

∑n
j=1(xj)

n
(3)

The mass parameters are adaptively updated in training.
They capture the mass of each single feature vector accu-
rately and mitigate the false matching problem effectively.

To implement UOT in a differentiable manner, an en-
tropic regularization term H(T ) = −

∑n
i,j=1 Tij log Tij is

introduced. An entropic UOT problem can be defined by:

min
T

[
〈C, T 〉+ τKL(T~1||α) + τKL(T>~1||β)− ηH(T )

]
where η is the regularization coefficients that denotes the
smoothness of the transport plan T . In our network, η is
fixed at 0.0001 empirically.

To obtain T , we consider the Fenchel-Legendre dual
form of the entropic UOT that is defined by:

max
u,v

−F ∗(−u)−G∗(−v)− η
∑
i,j

exp(
ui + vj − Cij

η
)


(4)

where F ∗ and G∗ are the Legendre conjugate of KL diver-
gence which can be computed by:

F ∗(u) = max
z
z>u− τKL(z||α) = τ〈eu/τ , α〉 − α>~1

G∗(v) = max
x

x>v − τKL(x||β) = τ〈ev/τ , β〉 − β>~1

Then the Sinkhorn algorithm [5] can be applied to (4) for
approximating UOT solution, with a desired transport plan
T encoded by optimal dual vectors u and v as below:

Tij = αiβj exp
1

η
[ui + vj − Cij ] (5)

Multi-Stage Feature Transport. With the transport
plan, the exemplar features can be transported to be aligned
with conditional input features for translation. Different
from CoCosNet [51] that warps exemplar images directly,
we adopt a multi-stage manner to transport exemplar fea-
tures as shown in Fig. 2. This multi-stage transport helps to
preserve detailed exemplar features especially for textures
with complicated patterns as illustrated in Fig. 5.

3.2. Translation Network

The translation network aims to synthesize images under
the semantic guidance of conditional inputs and style guid-
ance of aligned exemplar features. The overall architecture

Exemplar
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OT MatchingCosine Matching UOT Matching

Cosine Synthesis UOT SynthesisOT Synthesis

Figure 3. The comparison of different feature alignment meth-
ods: For visual comparison, we directly apply the feature align-
ment result to warp the exemplar. The Cosine Matching using
cosine similarity often leads to many-to-one matching that intro-
duces blurry feature alignment as highlighted by red box, which
further leads to blurry synthesis result as shown in Cosine Syn-
thesis. OT Matching using classical optimal transport suppresses
the many-to-one matching but tends to introduce false matching
as highlighted by orange box. Our proposed UOT Matching using
unbalanced optimal transport mitigates both many-to-one match-
ing and false matching effectively, which achieve the best feature
alignment and synthesis fidelity as illustrated in UOT Synthesis.

of the translation network is similar to SPADE [30] as illus-
trated in Fig. 2 (green part). More details of the network
structure are available in the supplementary material.

In translation network, the aligned exemplar features are
injected into the generation process at multiple stages to
control the style of output image. Although style feature in-
jection can be handled by several different approaches such
as SPADE [30], all prevalent approaches fail to consider the
semantic correlation between style features in feature injec-
tion. We designed an innovative semantic-aware injection
method to be described in the following subsection.

Semantic-Activation Denormalization. Ideally, the
style of a spatial position should be determined by all the
style feature with the same semantic instead of only relying
on the local feature in the exemplar. In addition, building
long-range dependencies between style features is usually
beneficial to image generation [50] as it allows to leverage
the complementary style features of distant image regions.
Based on these observations, we propose a novel SEmantic-
ACtivation (dE)normalization (SEACE) to model the long-
range dependencies across style features in style injection.

As shown in Fig. 4, two sets of modulation parameters
γZ and µZ are generated from the Aligned Feature. To ag-
gregate the style within each semantic region and build their
long-range correlation, we introduce a semantic-activation
matrix M , which can be obtained from the extracted fea-
ture of conditional input X = (x1, · · · , xn) by comput-
ing its self-attention Mij = xi · xj . As there is only se-
mantic feature in conditional input feature, the semantic-
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Figure 4. The structure of the proposed SEmantic-ACtivation
(dE)normalization (SEACE): To build the long range dependency
between style features, a semantic-activation matrix is obtained by
computing the self-attention of the condition input features X that
are extracted in the feature transport network. With the semantic-
activation matrix, γX is determined collectively by the entire re-
gion in γZ with the same semantic as shown at the bottom.

activation matrix accurately measures the self-semantic cor-
relation. Then the semantic-activation matrix is employed
to aggregate the modulation parameters by γX = M · γZ

and µX = M · µZ . Thus the feature in each position of γX

is determined collectively by a region with the same seman-
tic in γZ as shown at the bottom of Fig. 4. Meanwhile, the
long range correlation between modulation parameters with
the same semantic is established.

Specially, instead of modulating the generation network
directly with these modulation parameters, we first apply
the modulation parameters γX and µX to modulate the acti-
vation Xact of the conditional input as follows:

X ′act = γX ·Xact + µX (6)

The intuition is that some features cannot be correctly
matched if the conditional input contains some parts that do
not exist in the exemplar. Thus before injecting the aligned
style feature into the generation process, the unmatched fea-

ture of conditional input can be effectively corrected ac-
cording to the accurate semantic information of the con-
ditional input. Then two sets of modulation parameters γ
and µ are further generated from the modulated conditional
input X ′act.

A positional normalization [19] with variance γp and
mean µp is applied to the activation of the translation net-
work Lact to preserve the structure information synthesized
in prior layers, followed by a denormalization with γ and µ
as follows:

L′act = γ
Lact − µp

γp
+ µ (7)

3.3. Loss Functions

The feature transport network and translation network
are trained jointly, and will drive each other to achieve better
translation. For clarity purpose, we denote the conditional
input and exemplar as X and Z, the ground truth as X ′,
the generated image as Y , the feature extractor network for
conditional input and exemplar as FX and FZ , the transla-
tion network as G, the discriminator as D.

Feature Transport Network. First, the transported fea-
tures should be cycle consistent, i.e. the original features
should be able to be recovered from the transported fea-
tures. We thus employ a cycle-consistency loss as follows:

Lcyc = ||T> · T · Z − Z||1 (8)

where T is the transport plan. As the two feature extractor
networks FX and FZ aim to extract semantic information,
the extracted features from the conditional input X and the
corresponding ground truth X ′ should be consistent. A fea-
ture consistency loss can thus be defined as follows:

Lcst = ||FX(X)− FZ(X ′)||1 (9)

Translation Network. Several losses are employed in
the translation network to drive the generation of high-
fidelity images. As the semantic of the generated image
should be consistent with the conditional input X or the
ground truth X ′, we employ a perceptual loss Lperc [11] to
penalize the semantic discrepancy as below:

Lperc = ||φl(Y )− φ(X ′)||1 (10)

where φl represent the activation of layer l in pre-trained
VGG-19 [33] model. To ensure the consistency of statis-
tics between the generated image Y and the exemplar Z, a
contextual loss in [28] is adopted as follows:

Lcxt = − log(
∑
i

max
j
CXij(φ

i
l(Z), φ

j
l (Y ))) (11)

where i and j are the indexes of the feature map in layer
φl. Besides, a pseudo pairs loss Lpse as described in [51] is
included in training.



Table 1. Comparing UNITE with state-of-the-art image translation methods: The comparisons were performed over four public datasets
with 3 widely used evaluation metrics FID, SWD and LPIPS.

Methods ADE20K COCO-Stuff DeepFashion CelebA-HQ
FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑

Pix2pixHD[40] 81.80 35.70 N/A 121.2 44.82 N/A 25.20 16.40 N/A 42.70 33.30 N/A
Pix2pixSC[39] 56.23 24.52 0.378 77.63 26.34 0.307 28.49 21.13 0.172 49.39 33.20 0.193
StarGAN v2[3] 98.72 65.47 0.451 153.2 61.87 0.394 43.29 30.87 0.296 48.63 41.96 0.214
SPADE[30] 33.90 19.70 0.344 49.27 19.78 0.254 36.20 27.80 0.231 31.50 26.90 0.187
SelectionGAN[37] 35.10 21.82 0.382 52.41 20.32 0.277 38.31 28.21 0.223 34.67 27.34 0.191
SMIS[57] 42.17 22.67 0.416 58.21 22.65 0.311 22.23 23.73 0.240 23.71 22.23 0.201
SEAN[56] 24.84 10.42 0.499 37.74 16.31 0.355 16.28 17.52 0.251 18.88 19.94 0.203
CoCosNet[51] 26.40 10.50 0.560 35.23 14.54 0.391 14.40 17.20 0.272 14.30 15.30 0.208
UNITE 25.15 10.13 0.571 33.65 12.18 0.401 13.08 16.65 0.278 13.15 14.91 0.213

Table 2. Comparing UNITE with state-of-the-art image trans-
lation methods over evaluation metrics semantic consistency and
style consistency (on dataset ADE20k [54]).

Methods
Semantic Consistency Style Consistency
VGG42 ↑ VGG52 ↑ VGGM ↑ VGGV ↑

Pix2PixSC [39] 0.840 0.751 0.941 0.932
SPADE [30] 0.861 0.772 0.934 0.884
StarGAN v2 [3] 0.741 0.718 0.919 0.907
SelectionGAN [37] 0.843 0.785 0.951 0.912
SMIS [57] 0.862 0.787 0.951 0.933
SEAN [56] 0.868 0.791 0.962 0.942
CoCosNet [51] 0.878 0.790 0.986 0.965

UNITE 0.883 0.795 0.990 0.969

The discriminator adopts the same architecture with
Patch-GAN [10]. With the adversarial loss Ladv , the model
can be optimized with the following objective:

L = min
FX ,FZ ,G

max
D

(λ1Lcyc + λ2Lcst + λ3Lperc

+ λ4Lcxt + λ5Lpse + λ6Ladv)
(12)

where the weights λ balance the losses in objective.

4. Experiments
4.1. Experimental Settings

Datasets: We experiment over multiple public datasets
that handle different conditional image translation tasks.
• ADE20k [54] consists of 20k training images and each
image is associated with a 150-class segmentation mask.
This is a challenging dataset to most existing methods due
to its rich data diversity. We conduct image generation by
using its semantic segmentation as conditional inputs.
• COCO-Stuff [1] augments COCO [22] with pixel-level
stuff annotations including 80 thing classes and 91 stuff
classes. We use its layout as conditional inputs. Following
[19], objects covering less than 2% of the image are ignored
and images with 3 to 8 objects are used in experiments.
• CelebA-HQ [25] consists of 30,000 high quality face im-
ages. We use its edge maps as conditional inputs. The face

landmarks are connected as face edges, and the edges in the
background are detected by Canny edge detector.
•Deepfashion [24] contains 52,712 person images with var-
ious appearances and poses. 29,000 images are selected as
training set and the rest as validation set. We use its key
points as conditional inputs in experiments.

Evaluation Metrics: We adopt several evaluation met-
rics to assess image translation performance. Fréchet In-
ception Score (FID) [7] is adopted to measures the distance
between the distribution of generated images and real im-
ages. We also adopt Sliced Wasserstein distance (SWD)
[12] to measure statistical distance of low level patch dis-
tributions. Besides, Learned Perceptual Image Patch Simi-
larity (LPIPS) [52] is adopted to evaluate the diversity of the
translated images with different exemplars, which computes
the perceptual distance between image features extracted by
AlexNet [17].

We also adopt and extend the metrics in [51] to evaluate
semantic consistency and style consistency. Specifically, a
pre-trained VGG model [33] is used to extract high-level
features (relu4 2 and relu5 2) of the ground truth and gen-
erated images that capture semantic features. The seman-
tic consistency (VGG42 and VGG52) is defined by the dis-
tance between the extracted high-level features as computed
by cosine similarity. Similarly, the pre-trained VGG model
is applied to extract the low-level feature (relu1 2) of the
generated images and exemplars that capture style features.
The style consistency (VGGM and VGGV) is defined by
the distance of channel-wise mean and standard deviation
as computed by cosine similarity.

Besides, we conduct user study (US) to evaluate the im-
ages generated under different ablation settings. 100 pairs
of generated images were shown to 20 users who select the
image with the best visual quality.

Implementation Details: The learning rate for transla-
tion network and discriminator is 1e-4 and 4e-4 (the fea-
ture transport network is optimized jointly with the trans-
lation network). We use Adam solver with β1 = 0 and
β2 = 0.999. The experiments are conducted on 4 32GB
Tesla V100 GPUs with synchronized BatchNorm applied.
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Figure 5. Qualitative illustration of UNITE and state-of-the-art image translation methods over four different types of conditional inputs.

The feature size for optimal transport is 64 × 64 with fea-
ture dimension of 128. The image size is set at 256×256 for
generation tasks using semantic map, edge map, keypoints,
and 128 × 128 for generation task using layout which is
consistent with [35].

4.2. Experimental Results

We compare UNITE with several state-of-the-art trans-
lation methods including 1) Pix2pixHD [40], a supervised
image translation method ; 2) Pix2PixSC [39], an example-
guided image synthesis model based on Pix2PixHD [40];
3) StarGAN v2[3], a model for multi-modal translation
with support for style encoding from reference images; 4)
SPADE [30], a supervised translation method that supports
style injection from an exemplar image; 5) SelectionGAN
[37], a guided translation framework with cascaded seman-
tic guidance; 6) SMIS [57], a network for semantically
multi-modal synthesis task with all group convolutions; 7)
SEAN [56], a conditional translation network that can con-
trol the style of each individual semantic region; 8) CoCos-
Net [51], a leading exemplar-based translation framework
that works by building cross-domain correspondences.

Quantitative Results: In quantitative experiments, all
methods synthesize images with the same exemplars ex-
cept Pix2PixHD [40] which synthesizes images directly
without exemplar guidance (it doesn’t support style injec-
tion from exemplars). As shown in Table 1, we compare
UNITE with state-of-the-art methods in image quality as
measured by FID and SWD and image diversity as mea-
sured by LPIPS. We can observe that UNITE outperforms
all compared methods over all metrics and tasks consis-
tently. Specifically, UNITE achieves the best FID and SWD
which is largely attributed to our designed unbalance opti-
mal transport in accurate feature alignments and semantic-
activation normalization in effective style feature injection.

Besides generation quality, UNITE achieves the best gen-
eration diversity in LPIPS, thanks to the multi-stage feature
transport that aligns features in different scales to faithfully
preserve rich textures in exemplars.

Except for high quality and rich diversity, the gener-
ated image should preserve consistent semantics with con-
ditional inputs and present consistent styles with exemplars.
Table 2 shows the semantic consistency and style consis-
tency evaluated by the metrics described in Evaluation Met-
rics. With our UOT for accurate semantic feature matching
and SEACE for effective style injection, UNITE achieves
the best semantic consistency and style consistency.

Qualitative Evaluation: We compare images as gener-
ated by different translation methods as shown in Fig. 5. It
can be seen that UNITE achieves faithful styles to the exem-
plars. SPADE [30], SMIS [57] and StarGAN v2 [3] adopt
single latent code to encode image styles, which tend to cap-
ture global exemplar styles but miss local details. Although
SEAN [56] employs multiple latent codes for feature injec-
tion, it still struggles to preserve faithful and detailed ex-
emplar style. CoCosNet [51] can preserve certain details,
but it adopts cosine similarity to align features which of-
ten lead to many-to-one matching and missing details as
demonstrated by blurry textures in CoCosNet synthesized
images. Our UNITE instead adopts UOT to achieve accu-
rate feature alignment and a multi-stage transport to pre-
serve the detailed texture. Besides, most existing meth-
ods tend to produce various artefacts as they do not build
long-range dependency between style features. Our UNITE
designs SEACE to explicitly build long-range dependency
between style features which leads to superior synthesis fi-
delity as illustrated.

The proposed UNITE also demonstrates superior diver-
sity in image translation as illustrated in Fig. 6. We can
observe that UNITE is capable of synthesizing various real-
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Figure 6. Qualitative illustration of our proposed UNITE with different types of conditional inputs and exemplars.

Table 3. Ablation studies of our UNITE designs over CelebA-
HQ [25]: The baseline is SPADE that uses spatial denormalization
[30]. COS, OT and UOT mean to include cosine similarity, classi-
cal optimal transport and unbalanced optimal transport in feature
alignment. SEACE means to use the proposed semantic-activation
denormalization to inject style features. MS denotes the multi-
stage feature transportation. Model in the last row is the standard
UNITE. US denotes the user study metric.

Models FID ↓ SWD ↓ LPIPS ↑ US ↑

SPADE 31.50 26.90 0.187 0%
SPADE+COS 16.32 16.10 0.201 13%
SPADE+OT 17.87 17.24 0.202 10%
SPADE+UOT 14.02 15.41 0.206 22 %
SEACE+UOT 13.46 15.12 0.208 25 %

SEACE+UOT+MS 13.15 14.91 0.213 30 %

istic images with faithful style to the given exemplars.

4.3. Ablation Study

We conduct extensive ablation studies over CelebA-HQ
[25] to validate the effectiveness of our designs. As Table
3 shows, SPADE [30] is the baseline which achieves image
translation directly without feature alignment. When cosine
similarity is included to align features, the translation is im-
proved significantly. While replacing cosine similarity with
classical optimal transport, the performance does is clearly
aggravated as classical optimal transport introduce many
false matchings. However, the translation performance im-
proves clearly when our UOT is included, largely attributed
to that UOT adaptively learns the feature masses and sup-
presses false and many-to-one matching effectively. When
replacing SPADE with our proposed SEACE, the FID score
is improved clearly by 0.73. Additionally, the SWD and
LPIP scores are improved clearly when our proposed multi-
stage feature transport is included. We also performed qual-
itative ablation studies on DeepFashion [24] by removing

Conditional Input

w/o UOT

UNITEExemplar Ground Truth

w/o SEACEw/o MSw/o OT

Figure 7. The ablation study of each different design in UNITE
as evaluated over a sample from dataset DeepFashion [24]. Spe-
cially, ‘w/o OT’ denotes image translation without feature align-
ment, ‘w/o UOT’ denotes using classical OT (without learnt un-
balanced weights) to align features.

each of our designs from the complete UNITE model. As
Fig. 7 shows, our designed UOT, MS and SEACE all con-
tribute to the high-fidelity realistic image translation clearly.

5. Conclusions

This paper presents UNITE, an exemplar-based image
translation framework that adopts unbalanced optimal trans-
port to align the feature between conditional input and ex-
emplar, which effectively transport the style of the exem-
plar to the conditional input. A multi-stage feature transport
manner is applied to preserved more detailed deep features.
To inject aligned the style feature into the generation pro-
cess, we propose a novel semantic-activation normalization
which builds the semantic coherence between style features
with the same semantic in style injection. Quantitative and
qualitative experiments show that UNITE is capable of gen-
erating high-fidelity images with consistent semantic with
the conditional input and faithful style to the exemplar.
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[4] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rako-
tomamonjy. Optimal transport for domain adaptation. IEEE
transactions on pattern analysis and machine intelligence,
39(9):1853–1865, 2016. 2

[5] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In Advances in neural information pro-
cessing systems, pages 2292–2300, 2013. 2, 4

[6] Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,
and Lu Yuan. Deep exemplar-based colorization. ACM
Transactions on Graphics (TOG), 37(4):1–16, 2018. 2

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626–6637, 2017. 6

[8] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 2

[9] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 172–189, 2018. 2

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 2, 6

[11] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 5

[12] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 6

[13] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[14] Philip A Knight. The sinkhorn–knopp algorithm: conver-
gence and applications. SIAM Journal on Matrix Analysis
and Applications, 30(1):261–275, 2008. 2

[15] Ali Koksal and Shijian Lu. Rf-gan: A light and reconfig-
urable network for unpaired image-to-image translation. In
Proceedings of the Asian Conference on Computer Vision,
2020. 2

[16] Nicholas Kolkin, Jason Salavon, and Gregory
Shakhnarovich. Style transfer by relaxed optimal transport
and self-similarity. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
10051–10060, 2019. 2

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012. 6

[18] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh
Singh, and Ming-Hsuan Yang. Diverse image-to-image
translation via disentangled representations. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 35–51, 2018. 2

[19] Boyi Li, Felix Wu, Kilian Q Weinberger, and Serge Be-
longie. Positional normalization. In Advances in Neural In-
formation Processing Systems, pages 1622–1634, 2019. 5,
6

[20] Yandong Li, Yu Cheng, Zhe Gan, Licheng Yu, Liqiang
Wang, and Jingjing Liu. Bachgan: High-resolution image
synthesis from salient object layout. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020. 1, 2

[21] Matthias Liero, Alexander Mielke, and Giuseppe
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[31] Gabriel Peyré, Marco Cuturi, et al. Computational optimal
transport: With applications to data science. Foundations
and Trends R© in Machine Learning, 11(5-6):355–607, 2019.
1

[32] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial
training. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2107–2116, 2017. 2

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5, 6

[34] Richard Sinkhorn and Paul Knopp. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2):343–348, 1967. 2

[35] Wei Sun and Tianfu Wu. Image synthesis from reconfig-
urable layout and style. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 10531–10540,
2019. 2, 7

[36] Hao Tang, Dan Xu, Gaowen Liu, Wei Wang, Nicu Sebe, and
Yan Yan. Cycle in cycle generative adversarial networks for
keypoint-guided image generation. In Proceedings of the
27th ACM International Conference on Multimedia, pages
2052–2060, 2019. 1

[37] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J Corso,
and Yan Yan. Multi-channel attention selection gan with cas-
caded semantic guidance for cross-view image translation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2417–2426, 2019. 6, 7

[38] Cédric Villani. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008. 2

[39] Miao Wang, Guo-Ye Yang, Ruilong Li, Run-Ze Liang, Song-
Hai Zhang, Peter M Hall, and Shi-Min Hu. Example-guided
style-consistent image synthesis from semantic labeling. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1495–1504, 2019. 6, 7

[40] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 1, 2, 6, 7

[41] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5505–5514,
2018. 2

[42] Yingchen Yu, Fangneng Zhan, Rongliang Wu, Jianxiong
Pan, Kaiwen Cui, Shijian Lu, Feiying Ma, Xuansong Xie,
and Chunyan Miao. Diverse image inpainting with bidi-

rectional and autoregressive transformers. arXiv preprint
arXiv:2104.12335, 2021. 2

[43] Fangneng Zhan, Shijian Lu, Changgong Zhang, Feiying Ma,
and Xuansong Xie. Adversarial image composition with
auxiliary illumination. In Proceedings of the Asian Confer-
ence on Computer Vision, 2020. 2

[44] Fangneng Zhan, Chuhui Xue, and Shijian Lu. Ga-dan:
Geometry-aware domain adaptation network for scene text
detection and recognition. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 9105–9115,
2019. 2

[45] Fangneng Zhan, Hongyuan Zhu, and Shijian Lu. Scene text
synthesis for efficient and effective deep network training.
arXiv preprint arXiv:1901.09193, 2019. 2

[46] Fangneng Zhan, Hongyuan Zhu, and Shijian Lu. Spa-
tial fusion gan for image synthesis. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3653–3662, 2019. 2

[47] Bo Zhang, Mingming He, Jing Liao, Pedro V Sander, Lu
Yuan, Amine Bermak, and Dong Chen. Deep exemplar-
based video colorization. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8052–8061, 2019. 2

[48] Changgong Zhang, Fangneng Zhan, and Yuan Chang.
Deep monocular 3d human pose estimation via cascaded
dimension-lifting. arXiv preprint arXiv:2104.03520, 2021.
2

[49] Gongjie Zhang, Kaiwen Cui, Tzu-Yi Hung, and Shijian Lu.
Defect-gan: High-fidelity defect synthesis for automated
defect inspection. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
2524–2534, 2021. 2

[50] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In International Conference on Machine Learning, pages
7354–7363. PMLR, 2019. 4

[51] Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, and Fang Wen.
Cross-domain correspondence learning for exemplar-based
image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5143–5153, 2020. 1, 2, 4, 5, 6, 7

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6

[53] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8584–8593, 2019. 2

[54] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 6

[55] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. In Advances



in neural information processing systems, pages 465–476,
2017. 2

[56] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5104–
5113, 2020. 1, 6, 7

[57] Zhen Zhu, Zhiliang Xu, Ansheng You, and Xiang Bai. Se-
mantically multi-modal image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5467–5476, 2020. 6, 7


