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1. Appendix Outline

This appendix presents more details and experimental re-
sults including literature comparison, user study, detailed
network structure, limitation, and more qualitative illustra-
tion, respectively.

2. Literature Comparison

There are various methods for high-fidelity image syn-
thesis [20, 20, 2, 16, 18, 28, 25, 38, 26, 30, 23, 24, 22, 29, 27,
21]. Existing works explored different conditional inputs
such as semantic segmentation [6, 20, 16], scene layouts
[17, 34, 10], key points [14, 15, 32], edge maps [6, 36, 8],
etc. for photo-realistic image translation. On the other hand,
optimal style control remains a critical yet challenging task
that has attracted increasing attention in recent years. For
example, [5] and [13] transfer style codes from exemplars to
source images via adaptive instance normalization (AdaIN)
[4]. [16] uses variational autoencoder (VAE) [7] to en-
code exemplars for image translation. [2] employs a style
encoder for style consistency between exemplars and the
translated images. Different from the aforementioned meth-
ods that adopt latent vectors for style control, [33] learns
dense semantic correspondences between conditional in-
puts and exemplars for image translation. Similar ideas
have been explored in other translation tasks such as image
colorization [3, 31] that also employs exemplars to build up
semantic correspondences. We compare UNITE with sev-
eral state-of-the-art image-to-image translation methods in-
cluding 1) Pix2pixHD [20]; 2) Pix2PixSC [19]; 3) StarGAN
v2[2]; 4) SPADE [16]; 5) SelectionGAN [18]; 6) SMIS
[38]; 7) SEAN [37]; and 8) CoCosNet [33].

The official implementations of Pixel2PixelHD,
Pix2PixSC, StarGAN v2, SelectionGAN did not conduct
all the four translation tasks (i.e. semantic map to image,
layout to image, edge to image, key points to image). We
therefore adapted the official implementation and re-trained
models for the four translation tasks. SMIS and SEAN
included experiments on ADE20K[35] for semantic map
to image translation task, while the project page of SMIS
does not provide the pre-trained encoder for style control.
SEAN does not provide the pre-trained model on ADE20K.

We thus adapted and re-trained SMIS and SEAN for the
four translation tasks. CoCosNet provides the pre-trained
models of three tasks (semantic map to image, edge to
image, key points to image), we thus re-trained CoCosNet
on COCO-Stuff for layout to image translation only.

3. User Study
We conducted a user study to evaluate the quality of im-

ages that are synthesized by different methods. Specially,
100 pairs of images generated by all compared methods are
shown to 20 users who selected the image with the best vi-
sual quality. Fig. 1 shows experimental results over four
image translation datasets. We can observe that the images
generated by UNITE are much more realistic according to
the user feedback.

4. Detailed Network Structure
The architecture of the neural projector is similar to

SPADE [16]. The detailed architectures of the Genera-
tor, Discriminator and Feature Extractor in our UNITE are
shown in Figs. 2, 3, and 4, respectively.

5. More Qualitative Results
We provide more conditional image translation illustra-

tions that use different exemplars over four translation tasks
as shown in Figs. 5, 6, respectively.
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Figure 1. User study on four translation tasks on ADE20K [35],
COCO-Stuff [1], DeepFashion [11], and CelebA-HQ [12].

2



Generator

SEACE Block (1024)

SEACE Block (1024), Upsample (2)

SEACE Block (1024), Upsample (2)

SEACE Block (1024), Upsample (2)

SEACE Block (512), Upsample (2)

SEACE Block (256), Upsample (2)

SEACE Block (128)

3×3 Conv-3, Tanh

Conditional Input
ReLu ReLu

SEACE 3×3 Conv-k SEACE

ReLu
SEACE 3×3 Conv-k

SEACE

Activation (i)

Aligned Feature

Activation (i+1)
Positional Norm

3×3 Conv-k

SEACE Block

Aligned Features

3×3 Conv-128

3×3 Conv-128

Conditional Input

3×3 Conv-k

3×3 Conv-128

3×3 Conv-k

Figure 2. The structures of the Generator in our proposed image translation network: SEACE denotes the proposed semantic-activation
normalization, and Positional Norm denotes positional normalization [9].
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Figure 3. The structures of the Discriminator in our proposed
image translation network: SN denotes spectrum normalization.
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Figure 4. The structures of the Feature Extractor in our proposed
feature transport network: The proposed SEACE is adopted in the
last three layers to aggregrate semantic feature.
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Figure 5. UNITE image generation from semantic maps over dataset ADE20K [35].
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Figure 6. UNITE image generation from edge maps over CelebA-HQ [12].
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