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1. Network Configuration

Different scene text recognition and detetion techniques
have been developed from the earlier direct methods [9}
24, 16, 1, |6} [10] to the recent learning-based methods
17, 20, 21, [18, 23] and attention models [12, 13, 26].
This work [28] adopts Generative Adversarial Nets (GANs)
to achieve the domain adaptation of scene texts, which
performs pixel-level adaptation via continuous adversarial
learning between generators and discriminators which has
achieved great success in image generation [4} [15} 33, im-
age composition [13} 132} 27, 30, 31] and image-to-image
translation [34, |8, [19} |29]]. Different approaches have been
investigated to address pixel-level image transfer by en-
forcing consistency in the embedding space. [22] trans-
lates a rendering image to a real image by using condi-
tional GANs. [2] studies an unsupervised approach to
learn pixel-level transfer across domains. [14] proposes an
unsupervised image-to-image translation framework using
a shared-latent space. [5] introduces an inference model
that jointly learns a generation network and an inference
network. More recently, CycleGAN [34]] and its variants
[25}[11]] achieve very impressive image translation by using
cycle-consistency loss. [7] proposes a cycle-consistent ad-
versarial model that adapts at both pixel and feature levels.

Generators. The generator Gx (or Gy) consists of
Gx, (or Gy,) and Gx, (or Gy,) whose structures are
shown in Table[T]and Table 2] respectively.

Discriminators. There are three discriminators includ-
ing Dx, Dy and Dp. Dx and Dy adopt the discriminator
of PatchGAN [8] whose structure is shown in Table 3} Dr
is the spatial transformation discriminator which will dis-
tinguish the transformation matrix from X — Y and the
inverse transformation matrix from Y — X. Table |4] gives
detailed structures of Dy .

2. Implementation Detail

All input images X are resized to 480 x 480 as shown in
Fig. 2 in the main manuscript. In the localization network,
it will be further resized to 128. A Spatial Code with a
length of 10 in the spatial module Sx is randomly sampled

Table 1. The structure of Gx , (or Gy,): ‘s’ denotes the stride of
convolutional layers; ‘Out Size’ is the size of the feature map in
convolutional layers; ‘Block3’ contains 3 residual blocks.

Layers | Out Size Configurations
Block1 | 240 x 240 7 x 7 conv,32,s 2
Block2 | 120 x 120 3 x 3 conv,64,s 2
Block3 | 120 x 120 3 x 3 conv, 64 x3,s1
1 x 1 conv, 64

Block4 | 240 x 240 3 x 3 deconv, 64, s2
Block5 | 480 x 480 3 x 3 deconv, 32, s2
Block6 | 480 x 480 7 X 7conv,3,s1

Table 2. The structure of Gx, (or Gyg): ‘s’ denotes the stride of
convolutional layers; ‘Out Size’ is the size of the feature map in
convolutional layers; ‘Block4’ contains 5 residual blocks.

Layers | Out Size Configurations
Block1 | 480 x 480 7 X T conv,32,s 1
Block2 | 240 x 240 3 x 3 conv,64,s 2
Block3 | 120 x 120 3 X 3 conv, 128,52
Block4 | 120 x 120 3 % 3 conv, 256 x5, 51
1 x 1 conv, 256
Block4 | 240 x 240 3 x 3 deconv, 128, s2
Block5 | 480 x 480 3 x 3 deconwv, 64, s2
Block6 | 480 x 480 7 X 7conv,3,s1

which is passed to two fully-connected layers to generate
a feature map of size 128 x 128. The generated feature
map and the input image are then concatenated and passed
to the localization network L Nx for spatial transformation
prediction. The predicted transformation is then applied to
the original image X of size 480 x 480 by the transformation
module 7" to generate the transformed image 7T'x as well



Table 3. The structure of the Dx (or Dy): ‘s’ denotes the stride
of convolutional layers; ‘Out Size’ is the size of feature maps.

Layers | Out Size Configurations

Blockl | 240 x 240 | 4 x 4 conv,64,s2
Block2 | 120 x 120 | 4 x 4 conv, 128, s 2
Block3 60 x 60 4 x 4 conv, 256, s 2
Block4 | 30x30 | 4x4conv,b512,s2
Block5 30x30 | 4x4conv,512,s1

Table 4. The structure of the spatial transformation discriminator
Dr: ‘FC’ denotes fully-connected layers.

Layers | Out Size | Configurations
Block0O 9x1 Resize
Block1 256 FC
Block2 128 FC
Block3 1 FC

as the transformation map m as illustrated in Fig. [I] The
generated Tx and m are further concatenated as the input
of generator G x, to complete the black region. The black
region of T'x will be further replaced by the corresponding
region in the output of G x, by:

Replaced Tx =Tx *m+ Gx,(Tx,m)* (1 —m) (1)

The replaced T’x is then passed to Gx, for appearance
adaptation. If a single generator is used for the completion
and appearance adaptation, the adapted image will tend to
be blurry as shown in ‘Single Generator’ in Fig. [2]

For the learning in spatial space, Dx and Dy will also
distinguish the Adapted X according to the realism in ge-
ometry and appearance spaces, which will further enhance
the learning in spatial space. With better realism in spatial
space, Dx and Dy will concentrate on distinguishing the
images according to the feature in appearance space, thus
driving G x and Gy to learn better adaptation in appearance
space. With better realism in appearance space, Dx and
Dy will also drive the spatial module to learn better adap-
tation in spatial space. The coordinated learning in spatial
space and appearance space will drive network to achieve
the best adaptation performance.

3. Experiment

In the scene text detection experiment, as ICDAR2015
and MSRA-TD500 have larger views compared with IC-
DAR?2013, we crop 480 x 480 patches around the text re-
gion as the training reference according to the bounding box
annotations.
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Figure 1. The transformation map and missing region: m and
m;(ly are binary transformation maps in which 1 denotes the im-
age region and 0 denotes the padded background. Through the in-
verse transformation H ;(%,, the missing region in the spatial trans-
formation cannot be recovered as shown in m HyL:

Original Single Generator  Two Generators

Figure 2. Using a single generator to achieve completion and ap-
pearance adaptation will introduce blur as shown in ‘Single Gen-
erator’. The use of two sub-generators improves the quality of the
adapted image significantly as shown in “Two Generators’.
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Figure 3. The ST-GAN will lose the border region. So we con-
straint the range of the transformation parameters as predicted by
the ST-GAN in the test phase, so that the transformed image can
preserve all the information of original image as shown in ST-
GANWCO).

Original

ST-GAN(WC)

The original ST-GAN is for image composition, and we
adapted it to achieve image translation in spatial space. As
there is no mechanism in ST-GAN to preserve the informa-
tion of input images, many images will lose their bordering
region in spatial transformation as shown in the ‘ST-GAN’
of Fig. 3] For fair comparison, we constraint the range of
the parameters in the transformation matrix so that all the
information of the input image can be preserved as show in
the ‘ST-GAN(WC)’ of Fig. [3]in the test phase.

Two NVIDIA GTX 1080TI GPUs are used to train the



network with a batch size of 2. The learning rate is ini-
tialized with 0.001 and a polynomial decay mechanism of
learning rate is applied in the training process. Adam is
used as the optimizer.
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