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1. Appendix Outline

This supplementary document presents more details and
experimental results which include: 2. Detailed Architec-
ture, 3. Implementation Details, 4. More Ablation Study, 5.
Limitations, 6. Ethical Considerations, and 7. More quali-
tative results, respectively.

2. Detailed Architecture

The architecture of the generation network in MCL-Net
is consistent with CoCosNet [25]. The detailed architec-
tures of the generator and discriminator in the generation
network are shown in Fig. 1 and Fig. 2, respectively. The
detailed architecture of the feature encoder in the alignment
network is shown in Fig. 3.

3. Implementation Details

Due to the superior generation capability, there are nu-
merous GAN-based image-to-image translation methods
[9,11–15,19,22,26] that have been extensively investigated
and achieved remarkable progress on translating different
conditions such as semantic segmentation [1, 9, 10, 18, 21],
key points [6, 7, 17, 20] and edge maps [2, 16, 27].

For the training setting and hyper-parameters, including
learning rate, optimizer, etc., we follow the setting of Co-
CosNet for fair comparison. In detail, Adam solver with
β1 = 0 and β2 = 0.999 is adopted for optimization. All
experiments were conducted on 4 32GB Tesla V100 GPUs
with synchronized BatchNorm. The default size for build-
ing correspondence is 64×64. The size of generated images
is 256× 256 in all generation tasks.

For the contrastive learning, we apply a two-layer MLP
with 256 units at each layer to embed the encoder’s features.
We normalize the vector by its L2 norm. The temperature τ
is 0.07 by default. Consistent with CUT [8], a small projec-
tion head (i.e., a two-layer MLP) is included to embed the
encoded features.

Methods FID
Style Relevance Semantic

Color Texture Consistency

w/o Lcyc 28.73 0.986 0.962 0.863

w/o Lfcst 29.69 0.988 0.968 0.867

w/o Lper 46.32 0.972 0.876 0.817

w/o Lcxt 38.04 0.963 0.945 0.864

w/o Lpse 25.88 0.980 0.962 0.884

w/o Lmcl 26.12 0.977 0.965 0.853

w/o Ladv 5 0.853

Full Losses 24.35 0.984 0.967 0.886

Table 1. Ablation studies of different loss terms in MCL-Net over
ADE20K [24] dataset.

4. More Ablation Study
We follow the setting of CoCosNet [23], except in-

cluding the proposed marginal contrastive loss and self-
correlation map. We performed several ablation studies
to examine the contribution of each loss by removing it
from the overall objective. Table 1 show experimental re-
sults over the dataset ADE20K. We can see that all involved
losses contribute to the image translation performance in
different manners and amounts.

5. Limitations and Future Work
The proposed method incorporates the self-correlation

map for building correspondence. The learning of self-
correlation map is driven by the proposed magingal con-
trastive learning. However, the learned self-correlation map
is still not accurate enough, e.g., missing some structure
information. We would explore employing separate con-
trastive learning to learn the self-correlation map implicitly,
or using pre-trained model to extract self-correlation map
directly in our future work.

6. Ethical Considerations:
This work aims to synthesize high-fidelity images with

given conditional inputs and exemplar images. It could have
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negative impacts if it is used in illegal applications such as
image forgery.

7. More Qualitative Results
We provide more conditional translation results with dif-

ferent exemplars on three tasks as shown in Figs. 4, 6, 5.
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Figure 1. The structures of the Generator in our generation network: Positional Norm denotes positional normalization [3].
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Figure 2. The structures of the Discriminator in our generation
network: SN denotes spectrum normalization.
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Figure 3. The structures of the Feature Extractor in our correspon-
dence network.
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Figure 4. MCL-Net image generation from semantic maps over ADE20k [24].
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Figure 5. MCL-Net image generation from edge maps over CelebA-HQ [5].
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Figure 6. MCL-Net image generation from key points over dataset DeepFashion [4].
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