
Modulated Contrast for Versatile Image Synthesis: Supplementary Material

Fangneng Zhan
Nanyang Technological University

This supplementary material presents more details and
experimental results which include: 1. Pre-trained Segmen-
tation for Evaluation, 2. Implementation Details, 3. More
Analysis, 4. Limitations, 5. Ethical Considerations, and 6.
More Qualitative Results, respectively.

1. Pre-trained Segmentation for Evaluation

We use pre-trained segmentation model to evaluate the
quality of generated images conditioned on semantic maps.
For Cityscapes dataset in unpaired image translation, DRN
[15] with pre-trained DRN-D-105 model 1 is employed to
evaluate the mean Average Precision (mAP), pixel Accu-
racy (pixAcc), and class Accuracy (classAcc).

For ADE20K dataset in paired image translation, the
UPerNet [13] with pre-trained baseline-resnet101-upernet
2 3 is adopted to evaluate the mean Intersection of Union
(mIoU) and Accuracy (Acc).

2. Implementation Details

Multifarious image generation tasks [7–9, 18–20, 23, 25,
26, 28, 29] often entail multifaceted metrics to measure the
inter-image similarity with regard to different properties
such as image structures, image semantics and image per-
ceptual realism, etc. There are various losses to achieve
dedicated purposes in image synthesis [5, 6, 10–12, 16, 17,
21, 22, 24]. For instance, unpaired image translation is usu-
ally associated with certain losses to encourage correlation
between the input and output images.

For the training setting of unpaired image translation,
LSGAN loss [4], batch size of 12, Adam optimizer with
learning rate of 0.002 are adopted for training. All models
are trained up to 400 epochs for experiments on Cityscapes,
Horse→Zebra, Winter→Summer. For the model architec-
ture of unpaired image translation, we adopt the official
implementation of CUT 4. CycleLoss is implemented by
adding a generator and discriminator. The selection of en-
coder layers and the corresponding weights of WeightNCE

1https://github.com/fyu/drn
2https://github.com/CSAILVision/semantic-segmentation-pytorch
3http://sceneparsing.csail.mit.edu/model/pytorch/
4https://github.com/taesungp/contrastive-unpaired-translation

and MoNCE are consistent with PatchNCE 5, namely RGB
pixels, the first and second down-sampling convolution, and
the first and the fifth residual block. The receptive fields
of the selected layers correspond to 1×1, 9×9, 15×15,
35×35, and 99×99. Experiments with F/LSeSim are based
on the official implementation code 6.

For the training setting of paired image translation, we
follow the hyper-parameter setting of SPADE [8], just re-
placing the perceptual loss with PatchNCE, and our Weight-
NCE, MoNCE. The model is trained up to 200, 60, and
100 epochs with a batchsize of 20 on ADE20K, CelebA-
HQ, and DeepFashion datasets, respectively. For the
model architecture of paired image translation, we adopt
the official implementation of SPADE 7. When applying
PatchNCE, and our proposed WeightNCE and MoNCE
on paired image translation, the selection of pre-trained
VGG layers and the corresponding weights are consis-
tent with the implementation of perceptual loss in SPADE,
namely relu1 2, relu2 2, relu3 2, relu4 2, relu5 2 layers
with weights of 1/32, 1/16, 1/8, 1/4, 1.

In the contrastive learning, a two-layer MLP with 256
units at each layer is applied to embed the encoder’s fea-
tures which is further normalized through L2 norm. A tem-
perature of 0.07 is adopted in contrastive learning which is
consistent with CUT [7].

3. More Analysis
Our experiments show that a large negative term weight

Q contributes to the FID score. However, the content
preservation performance becomes worse with the increas-
ing of Q as shown in Fig. 1. We conjecture that excessively
large weight of negative term forces the contrastive learn-
ing to focus on the pushing of negative pairs and relatively
ignore the pulling of positive pairs, thus degrading the con-
trastive learning performance.

4. Limitations and Future Work
The proposed method adjusts the weights of all negative

samples. In fact, we aim to re-weight part of negative sam-
5https://github.com/taesungp/contrastive-unpaired-translation
6https://github.com/lyndonzheng/F-LSeSim
7https://github.com/NVlabs/SPADE
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Figure 1. The unpaired image translation performance of MoNCE on Horse→Zebra with different negative term value Q. The default
setting of MoNCE is Q = 1.

ples that may affect the contrastive learning significantly
(negative or positive). Thus, certain threshold technique is
expected to be employed to select part of the negative sam-
ple for fine re-weighting. On the other hand, differentiable
top-k technique [14] enables to select elements in a differ-
entiable way. In the future, we will explore differentiable
top-k operation for the selection of negative sample for re-
weighting.

5. Ethical Considerations:
The proposed method aims to boost the performance of

image synthesis. It could have negative impacts if it is com-
bined with other generation models for certain illegal pur-
pose such as facilitating image forgery.

6. More Qualitative Results
We provide more image translation results including

Figs. 2, 3, 4 for unpaired image translation, and Figs. 5,
6, 7 for paired image translation.
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Figure 2. Qualitative comparison of different losses for unpaired image translation on Cityscapes (Semantic → Image) [1].
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Figure 3. Qualitative comparison of different losses for unpaired image translation on Horse→Zebra [28].
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Figure 4. Qualitative comparison of different losses for unpaired image translation on Winter→Summer [28].
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Figure 5. Qualitative comparison of different losses for paired image translation on ADE20K [27].
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Figure 6. Qualitative comparison of different losses for paired image translation on CelebA-HQ (Semantic) [3].
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Figure 7. Qualitative comparison of different losses for paired image translation on DeepFashion (Keypoint) [2].
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