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1. Appendix Outline
Lighting estimation is a classic challenge in computer

vision and computer graphics, and it is critical for real-
istic relighting in objects insertion and image synthesis
[12, 1, 10, 14, 29, 2, 28, 30, 21, 22, 31]. On the other
hand, the recent works aim to estimate lighting from im-
ages by regressing representation parameters [3, 6, 13] or
generating illumination maps [8, 16] based image transla-
tion [19, 4, 15, 17, 34, 26, 33, 24, 25, 23, 32, 27, 20].

This appendix provides more details on the derivation of
sparse needlets, cubature points, spatially-varying illumina-
tion, and spherical transport distance.

2. Derivation of Sparse Needlets
We derive the sparse Needlet function from a Bayesian

framework and form the problem as a maximum posterior
estimator. We assume that the needlet coefficients of light
sources s follows Laplace distribution prior as Laplace prior
is well adapted to model sparse signals [11]. For HDR im-
ages, the ambient is mainly determined by the light sources
in the scenes. We assume that the needlet coefficients of
ambient contributed by each light source follow Gaussian
distribution with 0 mean [5]. The needlet coefficients of
ambient can thus be treated as several independent Gaussian
distributions. The needlet coefficients β of the illumination
map can be modelled as follows:

β = s︸︷︷︸
light sources

+ ϕ︸︷︷︸
ambient

+ η︸︷︷︸
noise

(1)

where s denotes the needlet coefficients of sparse light
sources which follow Laplace distribution, ϕ denotes the
needlet coefficients of ambient which follow Gaussian dis-
tribution, and η denotes noises that follow a Gaussian distri-
bution. According to [18], the Bayesian formulation of the
problem aims to maximize P (s|β):

P (s|β) ∝ P (s)L(β|s) = P (s)

∫
L(β|s, ϕ)P (ϕ)dϕ (2)

As the noise η follows Gaussian distribution and the back-
ground follows n independent Gaussian distributions, we

can get the formulations:

L(β|s, ϕ) = N(β;ϕ+ s,Mη)

P (ϕ) = N(ϕ, 0,Mϕ) = exp
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where Mη and Mϕ denote the covariance matrices of the
noise and Guassian distribution, respectively. Thus we can
obtain:
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According to the Gaussian integration,
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we can derive:

L(β|s) =
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Maximizing P (s|β) = L(β|s) ∗ P (s) is equivalent to
minimizing ∂s(−log(P (s|β))). As we assume that s fol-
lows a Laplace distribution with 0 mean, namely, P (s) ∝
exp [−λ||s||], we can obtain the partial derivative with re-
spect to x as follows:

∂s(−log(P (s|β))) = −(Mη +MηM
−1
ϕ Mη)

−1s+M−1
η s

+ (Mη +MηM
−1
ϕ Mη)

−1β −M−1
η β + λ∂s||s||

(7)

So sparse function to maximize P (s|β) is:

s = β −
[
M−1

η − (Mη +MηM
−1
ϕ Mη)

−1]−1
λ∂s|s| (8)

where ∂s(|s|) =

{
1 if s > 0
−1 if s < 0

. Thus we can obtain

the thresholding as follows:

sgn(β)(|β| −
[
M−1

η − (Mη +MηM
−1
ϕ Mη)

−1]−1
λ)+ (9)

which is essentially a soft thresholding operator with
threshold (M−1

η − (Mη +MηM
−1
ϕ Mη)

−1)λ.



As described in [7], we can separate light source and am-
bient region by thresholding illumination maps. The needlet
coefficients of ambient ϕ and covariance matrice Mϕ can
thus be computed, and s can be further computed by Eq.
8 with known Mϕ. Computing s directly on thresholded
light-source region is the same as hard thresholding (HT),
which performs worse than the proposed sparse function
(soft thresholding) as shown in Table 3 of the manuscript.
Specially, we only apply sparse function to high-frequency
coefficients (j=3 in this work). Therefore, the coefficients
s of high frequency bands are sparse but those of low-
frequency bands (i.e. s+ϕ which preserves the ambient ϕ)
are not sparse.

3. Cubature Points

Cubature points and cubature weights are provided
by the HEALPix discretization of the sphere [9]. The
HEALPix grid discretizes the sphere into Npix pixels with
equal area, where Npix = 12N2

side and Nside is required to
be a power of two which measures the discretization reso-
lution. We specify the cubature weights λjk as λjk = 4π

Npix
.

There are 1, 12, 48, 192 needlet coefficients for frequency
order j = 0, 1, 2, 3 respectively. The spatial localization
of needlet coefficients are indicated by cubature points on a
unit sphere. Fig. 1 illustrate cubature points for j = 1, 2, 3
by panoramas of spheres.

4. Spatially-varying Illumination

For Laval Indoor dataset [8], spatially-varying illumina-
tion cannot be predicted directly as there is no correspond-
ing ground truth in this dataset. We thus employ cuba-
ture points to approximate the spatially-varying illumina-
tion, more details to be described as follows.

We recall the definition of needlet basis ψjk and needlet
coefficients βjk:

ψjk(x) =
√
λjk

⌊Bj+1⌋∑
l=⌈Bj−1⌉

b(
l

Bj
)

l∑
m=−l

Ylm(ξjk)Y lm(x)
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√
λjk

∞∑
l=0

b(
l

Bj
)

l∑
m=−l

almYlm(ξjk)

(10)

where x ∈ S2, ξjk and λjk are pre-defined cubature points
as shown in Fig. 1 and the associated cubature weights, re-
spectively. The illumination map I(x) can be reconstructed
via I(x) =

∑
j,k βjkψjk(x). Obviously, the illumination

map is reconstructed based on cubature points. Thus we
approximate spatially-varying illumination by moving the
coordination cubature points.

When we move the insertion position by ∇ξ, the new di-
rection of the cubature point jk can be denoted by ξjk+∇ξ.
Then the needlet basis ψ′

jk on the new insertion position can

be denoted by:

ψjk(x)
′
=

√
λjk

⌊Bj+1⌋∑
l=⌈Bj−1⌉

b(
l

Bj
)

l∑
m=−l

Ylm(ξjk + ∇ξ)Y lm(x) (11)

With the predicted needlet coefficients, illumination map at
a new insertion position can be reconstructed by: I(x)′ =∑
j,k βjkψjk(x)

′. Fig. 2 shows the reconstructed spatially-
varying illumination at different insertion positions.

5. Spherical Transport Distance
Spherical transport distance can compute the distance

between two masses distributed on a sphere effectively. We
compare the spherical transport distance and L2 distance
with a simple example as illustrated in Fig 3.



(a) j=1 (b) j=2 (c) j=3

Figure 1. Visualization of cubature points (j = 1, 2, 3) on a unit sphere.
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Figure 2. Estimated spatially-varying illumination maps at different insertion positions (Center, Left, Right, Up, and Down).

Figure 3. Comparison between spherical transport distance and L2 distance: Take the red and blue masses in the first graph as two identical
spherical distributions. When the blue mass is moving along a great circle as indicated by the blue arrow, the two graphs on the right show
the distances between the two distributions that are measured by L2 distance and spherical transport distance, respectively.
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Sunkavalli, Christian Gagné, and Jean-François Lalonde.
Deep parametric indoor lighting estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7175–7183, 2019. 2
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